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Application of machine learning tools for seismic reservoir 
characterization study of porosity and saturation type
Zastosowanie metod uczenia maszynowego do charakterystyki porowatości  
i typu nasycenia przy użyciu atrybutów sejsmicznych

Tomasz Topór, Krzysztof Sowiżdżał

Oil and Gas Institute – National Research Institute

ABSTRACT: The application of machine learning (ML) tools and data-driven modeling became a standard approach for solving many 
problems in exploration geology and contributed to the discovery of new reservoirs. This study explores an application of machine 
learning ensemble methods – random forest (RF) and extreme gradient boosting (XGBoost) to derive porosity and saturation type  
(gas/water) in multi-horizon sandstone formations from Miocene deposits of the Carpathian Foredeep. The training of ML algorithms 
was divided into two stages. First, the RF algorithm was used to compute porosity based on seismic attributes and well location coor-
dinates. The obtained results were used as an extra feature to saturation type modeling using the XGBoost algorithm. The XGBoost 
was run with and without well location coordinates to evaluate the influence of the spatial information for the modeling performance. 
The hyperparameters for each model were tuned using the Bayesian optimization algorithm. To check the training models' robustness, 
10-fold cross-validation was performed. The results were evaluated using standard metrics, for regression and classification, on training 
and testing sets. The residual mean standard error (RMSE) for porosity prediction with RF for training and testing was close to 0.053, 
providing no evidence of overfitting. Feature importance analysis revealed that the most influential variables for porosity prediction 
were spatial coordinates and seismic attributes sweetness. The results of XGBoost modeling (variant 1) demonstrated that the algorithm 
could accurately predict saturation type despite the class imbalance issue. The sensitivity for XGBoost on training and testing data was 
high and equaled 0.862 and 0.920, respectively. The XGBoost model relied on computed porosity and spatial coordinates. The obtained 
sensitivity results for both training and testing sets dropped significantly by about 10% when well location coordinates were removed 
(variant 2). In this case, the three most influential features were computed porosity, seismic amplitude contrast, and iso-frequency compo-
nent (15 Hz) attribute. The obtained results were imported to Petrel software to present the spatial distribution of porosity and saturation 
type. The latter parameter was given with probability distribution, which allows for identifying potential target zones enriched in gas.

Key words: machine learning, random forest, XGBoost, seismic attributes, reservoir properties prediction.

STRESZCZENIE: Metody uczenia maszynowego stanowią obecnie rutynowe narzędzie wykorzystywane przy rozwiązywaniu wielu 
problemów w geologii poszukiwawczej i przyczyniają się do odkrycia nowych złóż. Prezentowana praca pokazuje zastosowanie dwóch 
algorytmów uczenia maszynowego – lasów losowych (RF) i drzew wzmocnionych gradientowo (XGBoost) do wyznaczenia porowatości 
i typu nasycenia (gaz/woda) w formacjach piaskowców będących potencjalnymi horyzontami gazonośnymi w mioceńskich osadach 
zapadliska przedkarpackiego. Proces uczenia maszynowego został podzielony na dwa etapy. W pierwszym etapie użyto RF do obliczenia 
porowatości na podstawie danych pochodzących z atrybutów sejsmicznych oraz współrzędnych lokalizacji otworów. Uzyskane wyniki 
zostały wykorzystane jako dodatkowa cecha przy modelowaniu typu nasycenia z zastosowaniem algorytmu XGBoost. Modelowanie 
za pomocą XGBoost został przeprowadzone w dwóch wariantach – z wykorzystaniem lokalizacji otworów oraz bez nich w celu oceny 
wpływu informacji przestrzennych na wydajność modelowania. Proces strojenia hiperparametrów dla poszczególnych modeli został 
przeprowadzony z wykorzystaniem optymalizacji Bayesa. Wyniki procesu modelowania zostały ocenione na zbiorach treningowym 
i testowym przy użyciu standardowych metryk wykorzystywanych do rozwiązywania problemów regresyjnych i klasyfikacyjnych. 
Dodatkowo, aby wzmocnić wiarygodność modeli treningowych, przeprowadzona została 10-krotna kroswalidacja. Pierwiastek błędu 
średniokwadratowego (RMSE) dla wymodelowanej porowatości na zbiorach treningowym i testowym był bliski 0,053 co wskazuje 
na brak nadmiernego dopasowania modelu (ang. overfitting). Analiza istotności cech ujawniła, że zmienną najbardziej wpływającą na 
prognozowanie porowatości były współrzędne lokalizacji otworów oraz atrybut sejsmiczny sweetness. Wyniki modelowania XGBoost 
(wariant 1) wykazały, że algorytm jest w stanie dokładnie przewidywać typ nasycenia pomimo problemu z nierównowagą klas. Czułość 
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Introduction

Porosity and saturation are essential parameters for char-
acterizing reservoirs and developing oil and gas exploration 
strategies. Both parameters can be precisely determined from 
laboratory measurements or well log interpretations as continu-
ous properties for a particular well. Although these data have 
a high accuracy (especially core measurements), they only 
identify isolated locations and leave out patches of missing 
data in-between wells. On the other hand, seismic attributes 
provide abundant lateral information at the reservoir scale but 
much lower resolution (Soleimani et al., 2020). The challenge 
for modern petroleum exploration geologists is to establish the 
relationship between these two datasets. However, these rela-
tionships are difficult to unveil due to the complex non-linear 
relationships between seismic data and reservoir parameters 
obtained from core measurements or well log interpretations 
(Feng, 2020; Liu et al., 2021). 

The latest machine learning (ML) algorithms derive complex 
patterns that exist between variables based on implicit interac-
tions and correlation. This unique learning capacity translates 
directly into the ability to make highly accurate predictions 
(Wood, 2020). Over the past two decades, ML algorithms 
and tools have made significant progress in solving the issues 
related to the study of reservoir characterization (Dramsch, 
2020). The ML tools have been successfully applied in facies 
identifications and rock-typing (e.g., Lis-Śledziona, 2019; Topór, 
2020; Liu et al., 2021) and in the prediction of key reservoir 
properties (e.g., Rafik and Kamel, 2017; Słota-Valim, 2018; 
Ahmadi and Chen, 2019; Ao et al., 2019; Erofeev et al., 2019; 
Naeini et al., 2019; Male and Duncan, 2020; Wood, 2020).

The area of seismic reservoir study mainly relies on deep 
learning methods. Bagheri et al. (2013) used support vector 
machines to analyze reservoir lithofacies of an Oil Field of Iran 
using 3D seismic data. The same tool was used by Na'imi et al. 
(2014) and Soleimani et al. (2020) to estimate porosity and 
water saturation. Feng (2020) used other deep learning meth-
ods and found that convolutional neural networks can achieve 
higher predictive accuracy in predicting reservoir porosity 
from seismic data than traditional artificial neural networks. 

wykrywania potencjalnych stref gazowych w przypadku modelu XGBoost była wysoka zarówno dla zbioru treningowego, jak i testowego 
(0,862 i 0,920). W swoich predykcjach model opierał się głównie na wyliczonej porowatości oraz współrzędnych otworów. Czułość dla 
uzyskanych wyników na zbiorze treningowym i testowym spadła o około 10%, gdy usunięto współrzędne lokalizacji otworów (wariant 
2 XGBoost). W tym przypadku trzema najważniejszymi cechami były obliczona porowatość oraz atrybut sejsmiczny amplitude contrast 
i atrybut iso-frequency component (15 Hz). Uzyskane wyniki zostały zaimportowane do programu Petrel, aby przedstawić przestrzenny 
rozkład porowatości i typu nasycenia. Ten ostatni parametr został przedstawiony wraz z rozkładem prawdopodobieństwa, co dało wgląd 
w strefy o najwyższym potencjale gazowym.

Słowa kluczowe: uczenie maszynowe, lasy losowe, drzewa wzmocnione gradientowo, atrybuty sejsmiczne, predykcja własności 
zbiornikowych.

Yasin et al. (2021) combined Gaussian simulation algorithms 
and post-stack seismic inversion using vector machine and 
particle swarm optimization to infer the spatial distribution of 
lithology and porosity from well logs and seismic data. Otchere 
et al. (2021) provided a comprehensive review of deep learning 
methods used in the petroleum industry.

Although deep learning methods prevail in reservoir char-
acterization studies, other ML algorithms such as random 
forest (RF) and extreme gradient boosting (XGBoost) are also 
gaining attention in academia and industry. Zou et al. (2021) 
used the RF algorithm to predict porosity from multiple seis-
mic attributes. Butorin (2020) used the same algorithm for 
probabilistic estimation of the distribution of an oil-saturated 
reservoir. Both ensemble methods are extremely popular ma-
chine learning algorithms for facies prediction (Bestagini et al., 
2017; Saporetti et al., 2018; Kim et al., 2019). In the contest 
organized by The Society of Exploration Geophysicists in 
2016, the XGBoost algorithm was leading in interpreting data 
from well-log analysis (Hall and Hall, 2017). One of the main 
benefits of using RF and XGBoost is their ability to handle data 
that are not structurally designed (James et al., 2013). Besides, 
they are computationally efficient, highly stable, and have 
superior accuracy, especially when it comes to classification 
problems (Chen and Guestrin, 2016; Hall and Hall, 2017).

This study used two ensemble methods – RF and XGBoost 
– to predict porosity and saturation type in sandstone forma-
tions from the Miocene deposits of the Carpathian Foredeep. 
The porosity prediction using RF was trained using seismic 
attributes and well location coordinates. The same variables 
and porosity prediction were used to classify the saturation type 
(water/gas) using the XGBoost algorithm. The XGBoost was 
also run in a second variant without well locations to evalu-
ate the effect of spatial variables on prediction performance. 
The results were evaluated using training and testing sets and 
metrics suitable for regression (RMSE, R2) and classification 
problems with class imbalance (sensitivity). In addition, the 
porosity computed with RF was compared with a deep learning 
approach from commercial software. The results were imported 
into Petrel software to represent the spatial distribution of 
porosity and saturation type. 
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Methods 

Brief background of the RF and XGBoost algorithms
The RF and XGBoost algorithms utilize a machine learn-

ing approach called ensemble learning that combines multiple 
models and so-called weak learners in the prediction process. 
This aggregation method helps overcome the technical chal-
lenges of single predictive models, such as low accuracy, high 
variance, and feature noise and bias.

The RF algorithm is a modification of bagged trees with 
many deep, uncorrelated trees (models) that operate as an en-
semble (Boehmke and Greenwell, 2020). Each model is trained 
parallel on a random subset of training samples and predictors 
(features). This feature helps to reduce variance, minimize 
overfitting, and improve prediction performance (James et al., 
2013). It also distinguishes RF from bagging, where all predic-
tors are used at each split. The RF has three hyperparameters 
that need to be set prior to the modeling process:
• mtry – the number of predictors to consider at each split;
• trees – the number of trees contained in the ensemble (for-

est);
• min_n – the minimum number of observations in a node 

for further splitting.
The author's previous paper provided detailed information 

about random forest hyperparameters (Topór, 2021 – based 
on Boehmke and Greenwell, 2020). A full description of the 
mathematical principles of RF algorithms is provided in Louppe 
(2014).

XGBoost is the most sophisticated ensemble tree method 
that adapts the idea of boosting weak learners using the gra-
dient descent architecture (Boehmke and Greenwell, 2020). 
Gradient boosting machines build an ensemble of shallow 
trees in a sequence where each model learns from mistakes 
generated by the previous model (Yoav and Schapire, 1997). 
Gradient descent is an optimization algorithm that is used 
to update model parameters. The idea behind it is to minimize 
the loss function by measuring the local gradient of loss for 
a specified set of parameters. The parameters are sequentially 
adjusted in the direction of the descending gradient until they 
reach a minimum (zero gradients) (Boehmke and Greenwell, 
2020). This algorithm can be performed on any loss function, 
thus handling regression and classification problems (Friedman, 
2001). An essential parameter in the gradient descent archi-
tecture is a learning rate hyperparameter that controls the size 
of the steps. This parameter must be tuned to prevent the local 
minimum from being omitted or from never being reached 
if the learning rate is too high or too low, respectively. 

XGBoost improves upon the base gradient boosting ma-
chines through system optimization and algorithmic enhance-
ments, the most important of which appear to be additional 

regularization hyperparameters (Boehmke and Greenwell, 
2020). Compared to RF, XGBoost has four extra hyperparam-
eters that provide added protection against overfitting:
• tree_depth – the integer for the maximum depth of the tree;
• learn_rate – the number for the rate at which the boosting 

algorithm adapts from iteration-to-iteration;
• loss_reduction – the number for the reduction in the loss 

function required to split further;
• sample_size – the number for the proportion of data that 

is exposed to the fitting routine.
For detailed information about XGBoost hyperparameters, 

see Boehmke and Greenwell (2020 – chapter 12.5). The math-
ematical principles of the XGBoost algorithm can be found in 
(Chen and Guestrin, 2016).

ML workflow
The workflow applied in this study uses the tidymodels 

framework and the concept developed by R Core Team for 
modeling and machine learning (R Core Team, 2018; Kuhn and 
Silge, 2020). Tidymodels is a metapackage that uses tidyverse 
rules with a common philosophy of designing, grammar, and 
data structure. 

Exploratory data analysis and data pre-processing
The analyzed dataset consists of seismic attributes calculated 

with a 3D seismic cube and with porosity and water saturation 
interpretations from well logs calibrated against core porosity 
measurements. The dataset refers to a field with multiple gas 
horizons located in the southern part of Carpathian Foredeep, 
filled with Middle Miocene shallow-marine sediments. In this 
area, the autochthonous Miocene complex is overthrusted 
by the Carpathian flysch nappes, which negatively impacts 
seismic data quality. The intervals of interest are gas-saturated 
sandstones reservoirs interbedded with mudstone-claystone 
formations.

The dataset consists of 28 variables and 787 177 observa-
tions. The outcome variables are porosity (phi) and saturation 
type (sat_type). Porosity was estimated based on standard 
methods of analyzing porosity crossplots on well-log profiles 
(neutron-acoustics, neutron-density). The saturation type comes 
from the estimated water saturation (Sw_initial) derived from 
the Archie or Indonesia formulas (Archie, 1942). The estimated 
water saturation was converted into a categorical variable 
of saturation type (water/gas) that represents horizons with 
potential high gas content (419 observations) and high water 
content (723 observations). The threshold used to partition 
Sw was set at 0.6 (Sw_initial > 0.6 indicates water horizons, 
Sw_initial < 0.6 shows gas horizons). This threshold still caused 
class imbalance issues that must be treated separately during 
data pre-processing. 
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The seismic attributes used in the modeling were generated 
using Petrel software (Schlumberger's trademark) and consisted 
of 23 parameters. The seismic attributes were derived from the 
acoustic impedance results of seismic inversion and attributes 
associated with the main features of the seismic signal, such 
as amplitude, frequency, phase, and polarity (Jędrzejowska- 
-Tyczkowska, 2003). Additionally, three parameters for the 
spatial position of the samples (coordinates) within the grid 
were also used. 

The completion rate for the outcome variables is extremely 
low (0.0015%), leaving a much smaller data set for modeling 
(1142 observations). A limited number of labels is common in 
seismic interpretation studies, where predictions are based on 
sparse information from well log interpretations. Since phi is 
of numerical type and sat_type of categorical type, the study 
evaluates regression and classification problems.

What is striking about this dataset is the very weak linear 
correlation between porosity and seismic attributes or spatial 
coordinates (r < 0.3) (Figure 1). The initial saturation used to 
derive the saturation type (water/gas) variable shows a link with 
seismic attenuation, z_coord, and a group of seismic frequency 
variables. There is also a negative trend between phi and 

Sw_initial, which is consistent with the Archie formula (Archie, 
1950). Figure 1 also indicates a variables cross-correlation 
issue that needs to be solved in the data pre-processing stage.

The data was split into a training set and a test set using 
a ratio of 0.8. The 10-fold cross-validation technique was used 
on the training set to obtain ten resampling sets for analysis 
and assessment. This technique minimizes estimation or clas-
sification errors on unseen data. In the classification model, 
cross-validation was coupled with the stratification of the 
sat_type variable. This operation allows stratified sampling 
and creates more representative training and assessment sets. 

Since both RF and XGBoost handle unstructured data, the 
data pre-processing stage was kept to a minimum. All numeri-
cal variables were normalized. A high correlation filter was 
applied to remove variables that had significant absolute cor-
relations. The filter threshold was set at 0.9, and the Spearman 
method was used to account for non-linear relationships. In the 
classification models, up-sampling was applied to deal with 
class imbalance, as recommended by Kuhn and Silge (2020). 
The function replicates the rows of a dataset to equalize the 
occurrence of levels in a sat_type variable. All operations were 
done on the training set.

Figure 1. Correlation plot for numerical variables used in modeling. The more strongly correlated appear closer together and are 
connected by stronger paths. The proximity of the points is determined using multidimensional clustering. The minimum absolute value 
of correlations (using the Pearson method) is set at 0.3
Rysunek 1. Wykres korelacji dla zmiennych numerycznych stosowanych w modelowaniu. Zmienne, które są silniej skorelowane, poja-
wiają się bliżej siebie i są połączone silniejszymi ścieżkami. Bliskość punktów jest określana za pomocą grupowania wielowymiarowe-
go. Minimalna wartość bezwzględna korelacji (metodą Pearsona) wynosi 0,3
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Model specification and tuning strategy
The regression model was trained using the RF algorithm 

and the “randomForest” engine; the classification model us-
ing the XGBoost algorithm and the “exboost” engine. The 
models were trained under different data quality assump-
tions. The classification model used the porosity prediction 
from the regression modeling process as an additional variable. 
In addition, the classification model was run in two variants: 
with and without coordinates. This operation allows evaluat-
ing an input spatial variable (such as the location of wells 
with potentially high gas content) for performance prediction. 
The hyperparameters for each model were tuned using Bayesian 
optimization. The method uses an iterative training process 
to obtain combinations of tuning parameters based on previ-
ous results. The combination of hyperparameters is predicted 
using Gaussian process modeling and then scored based on the 
performance estimates of the models (Shahriari et al., 2016). 

Results and Discussion

Results of hyperparameter tuning 
The most efficient way to improve the prediction accuracy of 

machine learning models is to tune the hyperparameters of the 
models. Unlike RF, the predictive accuracy of XGBoost highly 
depends on the settings of the hyperparameters, so they require 
tuning before the learning process begins (Probst et al., 2019). 
Bayesian optimization used in this study is a promising tuning 
strategy method used in reservoir characterization. This method 
offers an improved and more accurate way of selecting a hyper-
parameter identification method compared to manual and grid 
search techniques (Otchere et al., 2021). The results of Bayesian 
optimization of model parameters for RF and XGBoost are pre-
sented in Table 1. The combinations of tuning parameters for the 
regression model were scored using the residual mean standard 
error (RMSE); whereas for classification models, the scoring was 
based on the area under the receiver operator curve (roc auc).

Performance of the models 
The performance of the regression model was evaluated us-

ing RMSE and the coefficient of determination (R2). The RMSE 
has the same unit as the original data, and the R2 ranges from 
0 to 1. Both metrics measure the accuracy of a model. An RMSE 
of ~0.053, as in the results obtained from training (0.052) and 
testing sets (0.053), reflects a standard error of prediction of 
±5% porosity. Since the accuracy of the test set is similar to 
that of the training set, the RF model does not overfit. 

We attempted to compare the RF modeling results with 
those obtained from artificial neural networks (ANN) available 
in Petrel software. The application of ANN proved to be inef-
fective, resulting in correlation coefficient values in the range 
of 0.2–0.3 (depending on the data pre-processing), which is 
distinctly lower than those produced by RF models. The low 
prediction accuracy of ANN may have been associated with 
a too high vertical resolution of the 3D grid, which was 4.5 m. 
Reducing the vertical resolution of the 3D grid and constructing 
the ANN estimation model of average porosity values for each 
reservoir horizon separately improved the R2. This operation, 
however, changed the data quality assumption and did not al-
low for the comparison of the results. Moreover, it was seen as 
an oversimplification that neglected the variation of porosity 
in the vertical direction, which directly impacts the results of 
the modeled property. Therefore, the results obtained for RF 
seem promising, especially for solving estimation problems in 
high-resolution models or in low-thickness reservoirs.

While the results of the ANN algorithm could be used as 
a map of secondary average variables applied as a locally 
varying mean within stochastic or deterministic 3D modeling 
algorithms (Deutsch, 2002), the RF result can be considered 
as the final result of porosity prediction as well as a secondary 
variable for both locally varying means and co-kriging applica-
tions given the ability of the RF method to provide reasonable 
results within a high vertical resolution grid.

The performance of the classification models was assessed 
using classification accuracy and roc auc as standard metrics 

Table 1. Results of Bayesian optimization of hyperparameters for RF and XGBoost
Tabela 1. Wyniki optymalizacji hiperparametrów metodą Bayesa dla modeli RF i XGBoost

Regression Classification – variant 1 Classification – variant 2
random forest
porosity (phi) prediction

XGBoost
gas/water prediction 
(with coordinates)

XGBoost
gas/water prediction 
(without coordinates)

mtry:23
trees: 1951
min_n: 2

mtry: 20
trees: 1001
min_n: 4
tree_depth: 12
learn_rate: 0.0431080161
loss_reduction: 0.0001291416 sample_size: 0.8987710451

mtry: 23
trees: 1558
min_n: 2
tree_depth: 15
learn_rate: 0.0035576682
loss_reduction: 0.4632878423
sample_size: 0.8631567641
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Figure 2. Confusion matrix for modeling results obtained by XGBoost variant 1 (with coordinates) for the training set (A) and the 
testing (B) set 
Rysunek 2. Macierz błędów dla wyników modelowania uzyskanych dla wariantu 1 XGBoost (ze współrzędnymi) dla zbioru trenin-
gowego (A) i testowego (B)

Table 2. Main estimators for evaluating model performance
Tabela 2. Główne metryki dla wyników modelowania

Model Metric
Estimate

training testing

RF phi RMSE
R2

0.052
0.402

0.053
0.391

XGBoost sat_type  
(gas/water)

variant 1
accuracy
roc auc
sensitivity

0.909
0.963
0.862

0.917
0.966
0.920

variant 2
accuracy
roc auc
sensitivity

0.831
0.901
0.756

0.781
0.861
0.804

in this type of modeling (Table 2). While accuracy reflects 
the fraction of correctly classified observations, roc auc com-
putes sensitivity and specificity across continuous classifica-
tion thresholds (Kuhn and Silge, 2020). The higher the value 
of roc auc (which ranges from 0 to 1), the better the model 
discriminates between areas with high gas potential and high 
water saturation potential.   

However, high accuracy may be misleading in this case 
since the modeling deals with class imbalance. It is much 
easier for the model to find the area with high water satura-
tion that prevails in the studied dataset. Keeping in mind the 
goal of the study – predicting zones enriched with gas – the 
most reasonable parameter to evaluate the performance of 
classification models seems to be sensitivity (recall). This 
parameter reflects the fraction of positive correctly classified 
observations. A meaningful way to present the results of clas-

sification modeling and particularly sensitivity is through the 
confusion matrix (Figure 2A and 2B). In practice, the sensitivity 
means that on the training set, XGBoost (variant 1) was able to 
classify 286 as potential gas zones correctly and misclassified 
46 observations by assigning them to water zones (Figure 2A). 
The sensitivity of the model is high and equals 0.862 (Table 2). 
On the testing set, these values are 80 and 7 (sensitivity equals 
0.920; Figure 2B, Table 2).

Once the inputs from the spatial variables (x, y, and z co-
ordinates) were removed, the prediction accuracy of XGBoost 
variant 2 dropped. The model correctly predicted 251 observa-
tions and misclassified 81 observations (Figure 3A). On the 
testing set, these values are 70 and 17, respectively (Figure 3B). 
The sensitivity for both the training and the testing set dropped 
significantly by about 10% compared to XGBoost variant 1 
(Table 2).
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Interpretation of models 
Evaluation of feature importance is a critical part of ma-

chine learning interpretation and explainability (Molnar, 2019). 
In ensemble models like RF and XGBoost, the importance 
of the features is calculated using impurity-based feature 
importance, also known as the permutation method (James 
et al., 2013). The idea behind this procedure is to randomly 
shuffle each model variable and calculate the change in model 
performance. The most significant features that influence 
model performance have higher predictive power (Boehmke 
and Greenwell, 2020).

According to Molnar (2019), a key step in interpreting 
feature importance is to apply a cross-correlation, as add-
ing a correlated feature can decrease the importance of the 
associated feature. In this study, the cross-correlation issue 
was addressed in the pre-processing stage. Features that had 
absolute Spearman’s rank correlation coefficient greater than 
0.9 were eliminated. In the regression model, the number of 
features was limited to 19, while in the classification model, 
the number of features was reduced to 16 and 17 for variants 
1 and 2, respectively.

The top 10 influential features for the regression and clas-
sification models are shown in Figure 4. For porosity prediction, 
spatial coordinates and sweetness are at the top (Figure 4A). 
The RF model strongly relies on coordinates in the prediction 
process and looks for a spatial connection of porosity between 
the studied wells.

As expected, the computed porosity plays an essential role in 
predicting the saturation type (gas/water) in both classification 
models (Figures 4B, 4C). The proximity of zones with potentially  
high gas/water content, as encoded in spatial coordinates, also 
helps the model enhance prediction performance. The role 
of spatial coordinates is unquestionable, as removing these 
variables decreases model sensitivity by ~10%. In XGBoost 
with no coordinates (variant 2), the model strongly relies on 
amplitude contrast. The model also accounts for the iso fre-
quency component (15 Hz) and seismic attenuation attributes. 
The instantaneous frequency responds to wave propagation 
effects and depositional characteristics and can be used as a hy-
drocarbon or fracture zone indicator (low-frequency anomaly) 
and as a bed thickness indicator (Taner, 2001).

Spatial prediction of porosity and saturation type
The results of the modeling process were integrated with 

Petrel software to show the spatial distribution of obtained 
parameters: porosity and saturation type (gas/water) (Figures 5, 
6A, 6B). High porosity is not always related to high gas content. 
This is common in Miocene reservoirs of the Carpathian Fore-
deep, where gas can accumulate in various lithotypes, includ-
ing heterolites or even mudstones with much poorer reservoir 
properties (Leśniak et al., 2007; Sowiżdżał et al., 2020). On the 
other hand, this relationship is stronger in the gas accumulation 
region and disappears in the water zone, especially for variant 1,  
which utilizes well coordinates as a variable.

Figure 3. Confusion matrix for modeling results obtained by XGBoost variant 2 (without coordinates) for the training set (A) and the 
testing (B) set
Rysunek 3. Macierz błędów dla wyników modelowania uzyskanych dla wariantu 2 XGBoost (bez współrzędnych) dla zbioru trenin-
gowego (A) i testowego (B)
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Figure 4. Variable importance for the top ten most influential features in the regression (A) and classification (B, C) models
Rysunek 4. Dziesięć najbardziej wpływowych cech dla modelu regresji (A) i modeli klasyfikacyjnych (B, C)

Figure 5. Distribution of porosity resulting from RF application (for selected horizon)
Rysunek 5. Rozkład porowatości na podstawie modelu RF dla wybranego horyzontu
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The saturation type (gas/water) is presented in a probability 
distribution map in two variants for the results obtained from 
the XGBoost model with and without spatial coordinates 
(Figures 6A, 6B). This approach allows showing the potential 
zones enriched with gas (Sw < 60%) along with the probability 
of its occurrence as well as to evaluate the influence of already 
existing wells on the prediction of gas zones. 

Despite the differences in the accuracy and sensitivity of the 
models across test sets, both XGBoost models indicate similar 
zones with potentially high gas content (Figures 6A, 6B). What 
is intriguing is the ability of XGBoost to reproduce the level 
of gas/water contact even though this variable (interpreted at 
well locations) was removed from the data set since it strongly 
suggests the extent of gas zones.

Figure 6. Distribution of gas occurrence probability for selected horizon estimated with XGBoost with coordinates (A) and without 
coordinates (B)
Rysunek 6. Rozkład prawdopodobieństwa wystąpienia gazu dla wybranego horyzontu oszacowany za pomocą nodelu XGBoost ze 
współrzędnymi (A) i bez współrzędnych (B)

Conclusions

The study presents a data-driven approach for inferring 
porosity and saturation type from seismic attributes in multiple 
horizon gas field within sandstone formations of the Miocene 
strata of the Carpathian Foredeep. The modeling part of the 
study was performed using the tidymodels approach and state-
of-the-art machine learning modeling. Porosity was inferred 
using the RF algorithm, and the saturation type was performed 
with XGBoost using two model variants: with and without 
well location coordinates.

The RF model had the standard prediction error of ~0.053 
for both the training and testing sets with no evidence of 
overfitting.

The model had much greater accuracy compared to the 
results obtained from ANN (Petrel software). Feature impor-
tance analysis revealed that the RF mainly relied on spatial 
coordinates and sweetness from seismic attributes.

Despite the class imbalance issue, the XGBoost with lo-
cation coordinates demonstrated very good performance in 
distinguishing between potential gas and water zones. The sen-
sitivity of the model reached 0.862 and 0.920 for the training 
and testing sets, respectively. The two most significant features 
of the model were porosity values and spatial coordinates. 
The capability of accurately predicting saturation type dropped 
by about 10% once the well location coordinates were removed 
from the modeling process. The second variant of the XGBoost 
relied on the values of porosity, amplitude contrast, and the 
iso-frequency component (15 Hz).

The XGBoost with coordinates is more conservative in its 
predictions and clearly distinguishes the gas zones from the wa-
ter zones with a sharp gas water contact boundary (Figure 6A). 
In contrast, the second variant of XGBoost indicates potential 
gas zones with a much wider range (albeit with lower prob-
ability) and with a more fuzzy boundary between gas and 
water zones (Figure 6B). Unfortunately, these predictions are 
not verifiable due to a lack of wells in the peripheral parts of 
the study area. Based on the sensitivity results from the test-
ing set, XGBoost has the potential ability to find gas in 92% 
(variant 1) and 80% (variant 2) of indicated areas, depending 
on the data used in modeling.

Combining these results with probability distribution maps 
allows focusing on the most prospective locations with potential 
gas occurrence. 
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The obtained results were imported to Petrel software to 
show the spatial distribution of the parameters. The saturation 
type was presented as a probability distribution map, indicating 
potential target zones enriched in gas.

The presented workflow seems to be a promising tool for 
refining the reservoir modeling strategies, for identifying the 
best locations for infill drillings in appraised reservoirs or 
already exploited reservoirs, and finally, for decreasing un-
certainty in decision-making processes.
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